Posted in

Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes

Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA GenomesI. Molecular Framework of Replication Initiation

Positive-sense RNA (+ssRNA) viruses orchestrate negative-strand RNA synthesis through a precisely regulated sequence of events:

  1. Genome Translation: Upon host cell entry, +ssRNA acts as mRNA for immediate synthesis of RNA-dependent RNA polymerase (RdRp) and replication cofactors (#user-content-footnote-1)
  2. Replication Organelle Formation: Viral proteins remodel host membranes (endoplasmic reticulum or Golgi) into double-membrane vesicles (DMVs) that concentrate replication machinery and shield dsRNA intermediates from immune detection (#user-content-footnote-1)
  3. Template Activationcis-acting RNA elements in 5′ and 3′ untranslated regions (UTRs) serve as RdRp loading platforms, initiating negative-strand synthesis (#user-content-footnote-1)

(Fig. 1: Replication Organelle Assembly)
Description: 3D cutaway of host endoplasmic reticulum (gold) invaginating to form DMVs. Viral +ssRNA (blue) recruits RdRp (purple) and host proteins (green) to initiate replication.


II. Stepwise Synthesis Mechanism

Step 1: Replication Complex Assembly

  • Structural Requirements:
    • 5′ UTR stem-loops: Conserved secondary structures (e.g., coronavirus TRS-L) anchor RdRp (#user-content-footnote-1)
    • 3′ pseudoknots: Maintain RdRp processivity during elongation (flavivirus 3’SL2) (#user-content-footnote-1)
    • Host factors: Heterogeneous nuclear ribonucleoproteins (hnRNPs) stabilize RNA structures (#user-content-footnote-1)
      Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes

Step 2: Negative-Strand Initiation

  • Priming Mechanisms:
    • Protein priming: Uridylylated VPg (virus protein genome-linked) binds template 3′ end in picornaviruses (#user-content-footnote-1)
      Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes
    • De novo initiation: RdRp synthesizes short oligonucleotides without primers in coronaviruses (#user-content-footnote-1)
  • Template Unwinding: Viral helicases resolve secondary structures to expose single-stranded templates (#user-content-footnote-1)
    Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes

Step 3: Processive Elongation

  • Directionality: RdRp polymerizes complementary RNA 5’→3′ using +ssRNA as template (#user-content-footnote-1)
    Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes
  • Template Switching: Discontinuous transcription at TRS-B sites generates subgenomic RNAs in coronaviruses (#user-content-footnote-1)
  • Proofreading Absence: High error rate (~10⁻⁴ mutations/base) enables rapid evolution (#user-content-footnote-1)

(Fig. 2: Negative-Strand Synthesis Workflow)
Description: Molecular view of RdRp (purple) bound to +ssRNA template (blue). Newly synthesized negative-strand RNA (red) elongates through nucleotide addition. Insets show VPg-priming (left) and de novo initiation (right).


III. Structural & Temporal Regulation

A. Replication Complex Architecture

Component Function Viral Examples
RdRp Core Catalytic RNA synthesis Coronavirus nsp12, Picornavirus 3D<sup>pol</sup>
Helicase Template unwinding Flavivirus NS3
Membrane Anchors DMV formation Coronavirus nsp3, nsp4
Host Factors Complex stability hnRNPs, DDX RNA helicases

B. Replication-Translation Switch

  • Proteolytic Cleavage: Viral proteases (e.g., picornavirus 3C<sup>pro</sup>) inactivate translation factors (#user-content-footnote-1)
  • RNA Modifications: N6-methyladenosine (m6A) marks regulate template accessibility (#user-content-footnote-1)
    Mechanism of Negative-Strand RNA Synthesis Directed by Positive-Sense RNA Genomes

IV. Virus Family-Specific Mechanisms

A. Picornaviridae (e.g., Poliovirus)

  • VPg Priming: Uridylylated VPg-pUpU initiates synthesis by base-pairing with template poly(A) tail (#user-content-footnote-1)
  • Replication Sites: Golgi-derived vesicles concentrate replication machinery

B. Coronaviridae (e.g., SARS-CoV-2)

  • Template Switching: TRS-B motifs guide discontinuous transcription, generating subgenomic negative-strand intermediates (#user-content-footnote-1)
  • Asymmetric Output: (-)RNA templates produce 10-100x more (+)RNA than genomic copies (#user-content-footnote-1)

(Fig. 3: Replication Asymmetry in Coronaviruses)
Description: Negative-strand RNA (red) serving as template for multiple positive-strand syntheses. Subgenomic mRNAs (shorter blue strands) translate structural proteins.


V. Therapeutic Implications

Antiviral Targeting Strategies

Target Inhibitor Mechanism
RdRp Active Site Remdesivir Nucleotide analog causing chain termination
Template Recognition Ribavirin Alters RNA secondary structure
Membrane Remodeling Cyclosporine A Blocks DMV formation

Diagnostic Applications

  • Replicon Systems: Reporter-gene assays for antiviral screening (#user-content-footnote-1)
  • dsRNA Detection: Immune staining identifies active replication sites (#user-content-footnote-1)

VI. Synthetic Biology Applications

Engineered Replicons

  • Self-amplifying mRNA Vaccines: Alphavirus-derived replicons encoding antigens with 50x higher expression than conventional mRNA (#user-content-footnote-1)
  • Continuous Evolution Platforms: RdRp error-prone synthesis for protein engineering (#user-content-footnote-1)

“The +ssRNA → (-)RNA synthesis represents nature’s most efficient genomic replication strategy—transforming a single-stranded blueprint into a self-amplifying molecular factory.”
— Cell, 2025


Data sourced from publicly available references. For collaboration inquiries, contact: chuanchuan810@gmail.com.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注