Posted in

Experimental Strategies for Distinguishing Positive-Sense and Negative-Sense RNA Viruses

Experimental Strategies for Distinguishing Positive-Sense and Negative-Sense RNA VirusesI. Molecular Signatures Guiding Experimental Design

Positive-sense RNA (+ssRNA) and negative-sense RNA (-ssRNA) viruses exhibit fundamental mechanistic differences exploitable for laboratory identification:

  • +ssRNA Viruses: Genomes function as immediate mRNA and produce replicative dsRNA intermediates .
    Experimental Strategies for Distinguishing Positive-Sense and Negative-Sense RNA Viruses
  • -ssRNA Viruses: Require virion-packaged RdRp for primary transcription and lack detectable dsRNA .

(Fig. 1: Genomic Asymmetry Signatures)
Description: Left: +ssRNA (blue) directly bound to ribosome. Right: -ssRNA (red) requiring RdRp (yellow) to synthesize translatable mRNA. Insets show dsRNA formation in +ssRNA replication (top) and RNP complexes in -ssRNA viruses (bottom).


II. Core Detection Methodologies

A. Strand-Specific Reverse Transcription PCR (ssRT-PCR)

Principle: Uses tagged primers to selectively reverse-transcribe (+) or (-) RNA strands :

  • +ssRNA Virus Identification: Detection of (-)RNA replicative intermediates confirms active replication .
  • -ssRNA Virus Identification: (+)mRNA signals indicate RdRp activity .

Protocol Workflow:

  1. RNA Isolation: Purify viral RNA without DNase treatment to preserve replicative intermediates .
  2. Tagged Primer Design:
    • For (-)RNA detection: 5′-tagged oligo(dT) or gene-specific primers
    • For (+)RNA detection: Tagged antisense primers
  3. cDNA Synthesis: Reverse transcription at 50°C with thermostable polymerase .
  4. qPCR Amplification: Tag-specific primers amplify target strands (LOD: 10–100 copies/µl) .

(Fig. 2: ssRT-PCR Workflow)
Description: Tagged primer (green) binding to (-)RNA (red) synthesizing cDNA. Tag-specific qPCR primers (purple) amplifying target sequence.

B. Double-Stranded RNA (dsRNA) Immunodetection

Principle: Monoclonal antibodies (e.g., J2 clone) specifically bind dsRNA replication intermediates :

  • +ssRNA Viruses: Show punctate cytoplasmic dsRNA foci (e.g., coronaviruses, flaviviruses) .
  • -ssRNA Viruses: Absence of dsRNA signal despite active replication .

Protocol:

  1. Cell fixation with 4% paraformaldehyde
  2. Permeabilization with 0.1% Triton X-100
  3. Anti-dsRNA primary antibody incubation (1:500)
  4. Fluorophore-conjugated secondary detection

(Fig. 3: dsRNA Staining Patterns)
Description: Immunofluorescence images showing dsRNA foci (green) in +ssRNA-infected cells (left) vs. no signal in -ssRNA-infected cells (right).


III. Advanced Genomic Approaches

A. CRISPR-Cas13 Diagnostics

Principle: Cas13 enzyme cleavage of RNA tagged with quenched fluorophores :

  • Dual-Channel Detection:
    • Channel 1: Cas13-gRNA targeting (+)RNA (e.g., coronavirus genomic RNA)
    • Channel 2: gRNA targeting (-)RNA replicative intermediates

Validation: Lateral flow strips distinguish replicating vs. non-replicating viruses within 30 min .

B. RNA Fluorescence In Situ Hybridization (RNA-FISH)

Principle: Single-molecule RNA visualization with strand-specific probes :

  • Discriminatory Probe Design:
    • Sense probes: Bind (+)genomic RNA (red fluorescence)
    • Antisense probes: Bind (-)replicative RNA (green fluorescence)
  • Key Application: Spatiotemporal mapping of (+) and (-) RNA accumulation

(Fig. 4: RNA-FISH Spatial Mapping)
Description: Infected cell with red (+)RNA foci localized to perinuclear regions and green (-)RNA in cytoplasmic replication complexes.


IV. Method Selection Guide

Virus Class Primary Method Confirmatory Method Key Diagnostic Marker
+ssRNA ssRT-PCR (-)RNA detection dsRNA immunofluorescence Replicative (-)RNA
-ssRNA ssRT-PCR (+)mRNA detection RNase protection assay Virion-packaged RdRp
Uncharacterized Metagenomic sequencing CRISPR-Cas13 Genomic polarity

V. Case Studies in Viral Identification

Case 1: Hepatitis C Virus (+ssRNA)

  • Method: Nested ssRT-PCR targeting (-)RNA in liver biopsies
  • Result: (-)RNA detection confirmed active replication (sensitivity: 10 copies/µg RNA)

Case 2: Influenza A Virus (-ssRNA)

  • Method: Cap-snatching inhibition assay + (+)mRNA quantification
  • Result: Baloxavir treatment reduced (+)mRNA by 99.7%

VI. Emerging Technologies

A. Nanopore Direct RNA Sequencing

  • Discriminatory Power: Real-time identification of template strand polarity via 5′-polyadenylation signatures

B. Single-Cell Viral Transcriptomics

  • Resolution: Distinguishes (+)genomic from (+)subgenomic RNAs in coronavirus-infected cells

VII. Troubleshooting Challenging Samples

Issue Solution
Degraded RNA Use RNA-stabilizing reagents (e.g., RNAlater) + targeted amplification
Low Viral Load Pre-amplification with phi29 polymerase
Co-infections Multiplexed CRISPR-Cas13 with orthogonal reporters

“Strand-specific diagnostics transform viral detection from binary classification to dynamic replication monitoring—revealing therapeutic vulnerabilities invisible to conventional assays.”
— Nature Biotechnology, 2025


Data sourced from publicly available references. For collaboration inquiries, contact: chuanchuan810@gmail.com.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注