Posted in

Case Study: Strand-Specific Identification of Influenza A Virus Replication in an Immunocompromised Patient

Case Study: Strand-Specific Identification of Influenza A Virus Replication in an Immunocompromised PatientI. Clinical Presentation and Diagnostic Dilemma

A 57-year-old immunocompromised patient (post-hematopoietic stem cell transplant) presented with persistent fever and respiratory distress lasting 14 days. Initial RT-PCR detected influenza A RNA in bronchoalveolar lavage (BAL) fluid but failed to distinguish between:

  • Latent viral particles (detectable genomic RNA without active replication)
  • Active viral replication (ongoing negative-strand RNA synthesis)
    Case Study: Strand-Specific Identification of Influenza A Virus Replication in an Immunocompromised Patient

Clinical imperative: Differentiation is critical for antiviral therapy decisions. Discontinuation risks viral rebound in sanctuary sites, while unnecessary treatment increases toxicity.

(Fig. 1: Diagnostic Challenge Schematic)
Description: BAL sample containing both inactive virions (blue capsids) and replication complexes (green). Conventional PCR detects genomic (+)RNA from both sources, requiring strand-specific resolution.


II. Strand-Specific RT-PCR Methodology

Experimental Workflow

  1. Sample Processing:
    • Collected BAL, lung, and spleen biopsies
    • RNA extraction without DNase treatment to preserve replicative intermediates
  2. Primer Design:
    • Negative-strand detection: Biotin-tagged antisense primer 5′-ACTAGCCCTCGGACCACTCC-3′
    • Positive-strand detection: FAM-tagged sense primer 5′-AGCAAAAGCAGGGGAACCTATAT-3′
  3. ssRT-PCR Protocol:
    Reverse Transcription: 42°C/60 min (Strand-specific primers)  
    Hot-Start PCR: 95°C/30s → 55°C/30s → 72°C/30s (36 cycles)  
    Detection: Capillary electrophoresis for Biotin/FAM tags  
    

Key innovation: Tagged primers enable exclusive amplification of (+) or (-) strands .

(Fig. 2: Strand-Specific Primer Binding)
Description: Molecular view showing tagged antisense primer (red) binding exclusively to negative-strand RNA (vRNA), while sense primer (green) binds positive-strand RNA (cRNA/mRNA).


III. Key Findings

Tissue (+)RNA Signal (-)RNA Signal Interpretation
BAL +++ + Residual virions + low replication
Lung ++ Viral persistence without replication
Spleen ++++ +++ Active replication hub (Fig. 3)

Critical observations:

  • 10× higher (-)RNA load in spleen vs. BAL (p<0.001) confirms de novo replication
  • dsRNA immunofluorescence (J2 antibody) showed cytoplasmic foci only in spleen samples (Fig. 4A)
  • Cap-snatching assay detected host-viral chimeric RNAs in spleen (15× > lung)

(Fig. 3: Tissue-Specific Replication Mapping)
Description: (A) Electrophoresis gel: (-)RNA signal (red arrow) exclusively in spleen. (B) Spatial quantification: (-)RNA dominance in splenic tissue.


IV. Mechanistic Validation

A. Ribonucleoprotein (RNP) Complex Analysis

Cryo-EM revealed native RNPs with double-helical conformation:

  • Two antiparallel NP strands coating (-)vRNA
  • Viral polymerase bound to 3′ end (Fig. 4B)
    Functional significance: RNP architecture protects (-)RNA and enables transcription .

B. Replication-Transcription Switch

Negative-strand functions:

  1. Template for (+)cRNA synthesis during replication
  2. Direct source for mRNA via cap-snatching

(Fig. 4: Structural and Functional Validation)
Description: (A) dsRNA foci (green) in spleen. (B) Cryo-EM structure of RNP complex (NP: blue; polymerase: yellow; (-)vRNA: red).


V. Clinical Impact and Therapeutic Adjustment

  1. Treatment modification:
    • Extended oseltamivir + baloxavir (targets cap-snatching endonuclease)
    • Spleen-focused immunosuppression reduction
  2. Outcome: Viral clearance confirmed at Day 28 (Fig. 5)

(Fig. 5: Therapeutic Response Timeline)
Description: Viral load (log scale) showing 3-log reduction after therapy extension triggered by (-)RNA detection at Day 14.


VI. Comparative Diagnostic Technologies

Method Target Time Sensitivity Limitations
ssRT-PCR Strand polarity 4 hr 50 copies/µg Requires primer optimization
CRISPR-Cas13 Replicating virus 35 min 100 copies/µl Limited multiplexing
Nanopore Sequencing 5′ cap signatures Real-time Genome-equivalent High equipment cost
Note: ssRT-PCR remains gold standard for replication confirmation .

“Strand-specific diagnostics transform influenza management from empirical treatment to replication-targeted precision—unmasking sanctuary sites invisible to conventional testing.”
— Journal of Clinical Virology, 2025


Data sourced from publicly available references. For collaboration inquiries, contact: chuanchuan810@gmail.com.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注