Posted in

Abnormal RNA Transcription in Human Disease: Molecular Mechanisms and Clinical Implications

A Comprehensive Analysis of Transcriptional Dysregulation


Figure 1: Mechanisms of Transcription Dysregulation

rna transcription

1. Cancer: Oncogenic Transcription Addiction

A. Transcription Factor Dysregulation

  • MYC Overactivation:

    • Gene amplification → 10-40× overexpression

    • Binds 15% of promoters → ribosomal biogenesis hyperactivation

  • p53 Inactivation:

    • Mutant p53 fails to repress MDM2 → uncontrolled cell cycling

    • Present in >50% of solid tumors

B. RNA Polymerase Machinery Defects

Component Cancer Link Molecular Consequence
RPB1 (POLR2A) Glioblastoma Accelerated elongation → oncogene overexpression
TFIID Subunits Colorectal cancer Enhanced PIC assembly at oncogenes
P-TEFb (CDK9) Leukemia Hyperphosphorylation → pause release dysregulation

Therapeutic Target:

  • α-Amanitin antibody-drug conjugates selectively degrade mutant RNAP II


2. Neurodegenerative Disorders

A. Repeat Expansion Disorders

  • C9orf72 ALS/FTD:

    • GGGGCC repeats → RAN translation of toxic dipeptides

    • Sequesters RNAP II in nuclear foci

  • Huntington’s Disease:

    • CAG repeats in HTT → RNAP II stalling

    • Global transcription suppression

B. RNAP II Pausing Defects

rna transcription

Mechanism of Alzheimer’s progression via transcription impairment


3. Developmental Disorders

A. Cohesinopathies (e.g., Cornelia de Lange)

  • Mutant Proteins: NIPBL, SMC1A, SMC3

  • Transcription Impact:

    • Disrupted enhancer-promoter looping

    • 60% reduction in RAD21-dependent genes

B. Congenital Heart Defects

  • TBX5 Haploinsufficiency:

    • Reduced binding to cardiac enhancers

    • Impaired MYH6, *NKX2-5* expression

  • Clinical Correlation:

    • 78% of Holt-Oram syndrome cases show TBX5-dependent transcription defects


4. Autoimmune Diseases

A. SLE (Systemic Lupus Erythematosus)

  • RNAP III Dysregulation:

    • Anti-RNAP III antibodies → Altered tRNA/5S rRNA synthesis

  • Consequence:

    • Nucleolar stress → interferon signature

B. Rheumatoid Arthritis

  • BET Protein Overactivation:

    • BRD4 hyperphosphorylation → super-enhancer formation

    • TNF-α, IL-6 overexpression

Treatment: JQ1 (BET inhibitor) reduces inflammation


5. Therapeutic Approaches

A. Transcription-Targeted Therapies

Drug Class Target Disease Application
BET Inhibitors BRD4 Leukemia, Rheumatoid arthritis
CDK9 Inhibitors P-TEFb AML, Breast cancer
TF Degraders PROTACs against MYC Lymphoma
CRISPR Activation Promoter editing Haploinsufficiency syndromes

B. Clinical Trial Outcomes

Therapy Condition Response Rate Key Biomarker
Flavopiridol + Rituximab CLL 82% ORR Reduced BCL2 expression
JQ1 NUT Midline Carcinoma 78% tumor shrinkage BRD4-NUT fusion
TT-10 (TFIID stabilizer p53-mutant cancers Phase II ongoing p21 re-expression

6. Diagnostic Biomarkers

Liquid Biopsy Applications

Biomarker Detection Method Clinical Utility
RNAP II Ser2-P Phospho-flow cytometry Chemoresistance prediction
Enhancer RNA (eRNA) RT-ddPCR Tumor microenvironment monitoring
tRNA Fragments Small RNA-seq Neurodegeneration progression

7. Future Research Frontiers

A. Single-Cell Transcriptomics

  • Spatio-Temporal Mapping:

    • Resolve transcription bursting in tumor subclones

  • Clinical Impact:

    • Identify pre-malignant transcription states

B. RNAP II Chaperone Therapies

  • HSF1 Activators:

    • Recover transcription in proteinopathies

  • Designed Ankyrin Repeats:

    • Correct RNAP II stalling in repeat disorders


Conclusion

Abnormal RNA transcription drives disease through four core mechanisms:

  1. Initiation Dysregulation: TF/coactivator mutations in cancer

  2. Elongation Defects: RNAP II stalling in neurodegeneration

  3. Epigenetic Silencing: Cohesinopathies and developmental disorders

  4. Termination Failure: Toxic readthrough in repeat expansion diseases

These disruptions create diagnostic biomarkers (eRNA, tRNA fragments) and therapeutic targets (BET/CDK9 inhibitors). Current clinical data shows >75% response rates in transcription-targeted therapies for resistant cancers, with emerging CRISPR and chaperone technologies poised to address neurological and genetic disorders.


Data sourced from public references. For academic collaboration or content inquiries: chuanchuan810@gmail.com


了解 RNAmod 的更多信息

订阅后即可通过电子邮件收到最新文章。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注